Basic Passive Components

Fixed Variable

Resistor (Ohms)

© Capacitor (Farads) -

- ${ }^{\prime \prime}$

C
\geqslant Inductor (Henries)
m

L

Transformer

Things to know!

B Voltage is designated by V (Volts) (or sometimes E)
Current is designated by I (Amps)
POwer is designated by P (Watts)

Your powers of 10: Pico, nano, micro, milli, kilo, mega, giga
High school algebra for series and parallel circuits
B Very basic knowledge of complex numbers for X_{C} and X_{L}

Powers of Ten - Steps of 1000

Giga (G)	$10^{\wedge} 9$	$1,000,000,000$
Mega (M)	$10^{\wedge} 6$	$1,000,000$
kilo (k)	$10^{\wedge} 3$	1,000
milli (m)	$10^{\wedge} 0$	1
micro (μ)	$10^{\wedge}-3$	0.001
nano (n)	$10^{\wedge}-6$	0.000000001
pico (p)	$10^{\wedge}-9$	0.000000000001

Resistor

Characteristics:

M

- Resists the flow of current

In theory, equal resistance to AC or DC (No reactance)

- Doesn't store energy

Power is dissipated as heat

- Voltage and current are in phase
- Non-polarized
- Metal Film, Wirewound, Carbon
- Variable: Rheostat (2 pins), Potentiometer (3 pins)
- Large range of values $-\mathrm{m} \Omega$ to $\mathrm{G} \Omega$
- Large range of power - mW to KW

Formulas:

- $\mathrm{V}=\mathrm{I}$ * R (Ohm's Law)

Voltage $=$ Current $*$ Resistance
$-\mathrm{P}=\mathrm{V} * \mathrm{I}$ or $\mathrm{P}=\mathrm{I}^{2}{ }^{*} \mathrm{R}$
Power $=$ Voltage $*$ Current

Resistor

Test Questions

T5D06: What is the resistance of a circuit that draws 4 amperes from a 12 -volt source?
A) 30 ohms
B) 16 ohms
C) 48 ohms
D) 8 Ohms

- $R=V / I \rightarrow R=12 / 4=30 h m s(A)$

T5D07: What is the current flow in a circuit with an applied voltage of 120 volts and a resistance of 80 ohms?
A) 9600 amperes
B) 200 amperes
C) 0.667 amperes
D) 1.5 amperes

- $I=V / R \rightarrow I=120 / 80=1.5$ Amperes (D)

T5D10: What is the voltage across a 2 -ohm resistor if a current of 0.5 amperes flows through it?
A) 1.0 volt
B) 0.25 volts
C) 2.5 volts
D) 1.5 volts
$-V=I * R \rightarrow V=0.5 * 2=1.0 \operatorname{Volt}(A)$

Series / Parallel Resistors

Series:

$-\mathrm{Rt}=\mathrm{R} 1+\mathrm{R} 2+\ldots$

- Always LARGER than the largest value
- Current is the same through all resistors
- Voltage across each resistor is dependent on the individual resistor values

Parallel:

$-\mathrm{Rt}=1 /(1 / \mathrm{R} 1+1 / \mathrm{R} 2+\ldots)$

- Always SMALLER than the smallest value
- For two resistors, $\mathrm{Rt}=(\mathrm{R} 1 * \mathrm{R} 2) /(\mathrm{R} 1+\mathrm{R} 2)$
- Voltage is the same across all resistors
- Current through each resistor is dependent on the individual resistor values

Test Questions

G5C05: If three equal value resistors in series produce 450 ohms, what is the value of each resistor?
A) 15000 hms
B) 900 hms
C) 150 ohms
D) 175 ohms

- $R=R t / 3=450 / 3=150$ Ohms (C)

G5C15: What is the total resistance of a 10 ohm , a 20 ohm , and a 50 ohm resistor connected in parallel?
A) 5.9 ohms
B) 0.17 ohms
C) 100000 hms
D) 80 ohms

- $R+1=\left(R 1^{*} R 2\right) /(R 1+R 2) \rightarrow R+1=(10 * 20) /(10+20)=200 / 30=6.667$ Ohms
$R t=\left(R+1^{*} R 3\right) /(R+1+R 3)=\left(6.667^{*} 50\right) /(6.667+50)=333.333 / 56.667=5.880 \mathrm{hms}(A)$
- OR -
- $R t=1 /(1 / R 1+1 / R 2+1 / R 3)=1 /(0.1+0.05+0.02)=1 / 0.17=5.880 \mathrm{hms}(A)$
- OR - Use currents, Assume 50V to make the math easy
- $[\mathrm{I}(50 \Omega)=1 \mathrm{~A}]+[\mathrm{I}(20 \Omega)=2.5 \mathrm{~A}]+[\mathrm{I}(10 \Omega)=5 \mathrm{~A}] \rightarrow \mathrm{I}+=8.5 \mathrm{~A}$
$R t=V / I=50 / 8.5=5.880 \mathrm{hms}(A)$

Uses

Convert Current to Voltage
$\mathrm{V}=\mathrm{I} * \mathrm{R}$

Gain Setting
Ratio of resistance values determines amplifier gain

Inverting Amplifier

Uses

Limit circuit current
Drop excess voltage to prevent LED burn out

Impedance Plots

Impedance Plot

Sine waves and phase angles

Capacitor

Characteristics:

-11

- Resists a CHANGE in voltage
- Stores energy in an electric field

Ideally any input energy is returned to the source

- Non-polarized: Air, Ceramic, Film, Mica
- Polarized: Electrolytic (Aluminum, Tantalum)
- Variable: Generally air (2 pins)
- Usually from pF to $\mu \mathrm{F}$
- Passes AC, Blocks DC
- Current through the capacitor leads the voltage by 90°-- ELI the ICE man
- Capacitive reactance has a negative phase angle (-jX)

Formulas:

$-\mathrm{X}_{\mathrm{C}}=1 /(2 \pi \mathrm{fC})$; Reactance decreases with increase in frequency or capacitance

- I = C dv/dt

Current $=$ Capacitance $*$ Change in voltage with respect to time

Capacitor

Series / Parallel Capacitors

Series:

$-\mathrm{Ct}=1 /(1 / \mathrm{C} 1+1 / \mathrm{C} 2+\ldots)$

- For two capacitors, $\mathrm{Ct}=(\mathrm{C} 1 * \mathrm{C} 2) /(\mathrm{C} 1+\mathrm{C} 2)$
- Always SMALLER than the smallest value
- AC Current is the same through all capacitors
- Voltage across each capacitor is dependent on the individual capacitor values

Parallel:

$-\mathrm{Ct}=\mathrm{C} 1+\mathrm{C} 2+\ldots$

- Always LARGER than the largest value
- Voltage is the same across all capacitors
- AC Current through each capacitor is dependent on the individual capacitor values

Capacitor construction

Capacitance: $\mathbf{C} \propto \varepsilon \mathbf{\varepsilon A} / \mathbf{d}$
ε : Permittivity (Dielectric constant)
A: Area of the electrodes
d: Distance between the electrodes

Series

Parallel

Test Questions

G5C09: What is the capacitance of three $100 \mu \mathrm{~F}$ capacitors connected in series?
A) $0.30 \mu \mathrm{~F}$
B) $0.33 \mu \mathrm{~F}$
C) $33.3 \mu \mathrm{~F}$
D) $300 \mu \mathrm{~F}$

- $C=C t / 3=100 \mu \mathrm{~F} / 3=33.3 \mu \mathrm{~F}(C)$

G5C08: What is the equivalent capacitance of two 5.0 nF capacitors and one 750 pF capacitor connected in parallel?
A) 576.9 nF
B) 1733 pF
C) 3583 pF
D) 10.750 nF

- $C t=C 1+C 2+C 3=5.0+5.0+0.75=10.75 n F(D)$

Uses

Decoupling / Bypass
Keep high frequency noise from affecting power supply lines

Coupling
Pass AC signals between circuits with different DC voltages

Uses

Filtering
Simple (first order) low pass and high pass RC filters

8 Tuned Circuits
Frequency selectivity when used with an inductor

Impedance Plot

Inductor

Characteristics:

- Resists a CHANGE in current
- Stores energy in a magnetic field

Ideally any input energy is returned to the source

- Non-polarized
- Cores: Air, Iron, Ferrite (Permeability μ)
- Variable: Tapped (Roller inductor), Moveable core
- Usually from nH to H
- Passes DC, Impedes AC
- Voltage across the inductor leads the current by 90°-- ELI the ICE man
- Inductive reactance has a positive phase angle (+jX)

Formulas:

- $\mathrm{X}_{\mathrm{L}}=2 \pi f \mathrm{f}$; Reactance increases with an increase in frequency or inductance
- $\mathrm{L}=\mathrm{N}^{2} * A L$; Inductance depends on number of turns and Inductance Index
$-\mathrm{V}=\mathrm{L} \mathrm{di} / \mathrm{dt}$
Voltage $=$ Inductance $*$ Change in current with respect to time

Inductor

Test Questions

E5D09: What happens to reactive power in an AC circuit that has both ideal inductors and ideal capacitors?
A) It is dissipated as heat in the circuit
B) It is repeatedly exchanged between the associated magnetic and electric fields, but is not dissipated
C) It is dissipated as kinetic energy in the circuit
D) It is dissipated in the formation of inductive and capacitive fields

Test Questions

E6D05: What is one reason for using ferrite cores rather than powdered iron in an inductor? (C)
A) Ferrite toroids generally have lower initial permeability
B) Ferrite toroids generally have better temperature stability
C) Ferrite toroids generally require fewer turns to produce a given inductance value
D) Ferrite toroids are easier to use with surface mount technology

E6D06: What core material property determines the inductance of an inductor? (D)
A) Thermal impedance
B) Resistance
C) Reactivity
D) Permeability

E6D08: What is one reason for using powdered-iron cores rather than ferrite cores in an inductor?
A) Powdered-iron cores generally have greater initial permeability
B) Powdered-iron cores generally maintain their characteristics at higher currents
C) Powdered-iron cores generally require fewer turns to produce a given inductance
D) Powdered-iron cores use smaller diameter wire for the same inductance

Series / Parallel Inductors

Series:

$-\mathrm{Lt}=\mathrm{L} 1+\mathrm{L} 2+\ldots$

- Always LARGER than the largest value
- Current is the same through all inductors
- Voltage across each inductor is dependent on the individual inductor values

Parallel:

$-\mathrm{Lt}=1 /(1 / \mathrm{L} 1+1 / \mathrm{L} 2+\ldots)$

- Always SMALLER than the smallest value
- For two inductors, $\mathrm{Lt}=(\mathrm{L} 1 * \mathrm{~L} 2) /(\mathrm{L} 1+\mathrm{L} 2)$
- Voltage is the same across all inductors
- Current through each inductor is dependent on the individual inductor values

Test Questions

G5C10: What is the inductance of three 10 mH inductors connected in parallel?
A) 0.30 H
B) 3.3 H
C) 3.3 mH
D) 30 mH

- $L+1=(L 1 * L 2) /(L 1+L 2) \rightarrow L+1=(10 * 10) /(10+10)=100 / 20=5 \mathrm{mH}$

$$
L t=\left(L+1^{*} L 3\right) /(L+1+L 3)=\left(10^{*} 5\right) /(10+5)=50 / 15=3.33 \mathrm{mH}(C)
$$

- OR -
- $L t=1 /(1 / L 1+1 / L 2+1 / L 3)=1 /(100+100+100)=1 / 300=3.33 \mathrm{mH}(C)$ - OR -
- $L t=10 / 3=3.33 \mathrm{mH}$ (C)

G5C11: What is the inductance of a 20 mH inductor connected in series with a 50 mH inductor?
A) 0.07 mH
B) 14.3 mH
C) 70 mH
D) 1000 mH

- $L t=L 1+L 2=20+50=70 \mathrm{mH}$ (C)

Uses

Switching Power Supplies
Energy is stored in the inductor's magnetic field

Loading Coil
Tunes out the capacitive reactance of the antenna

Uses

Common Mode Choke
Lots of info from K9YC and GM3SEK

Impedance Plot

Transformer

Characteristics:

- Consists of two (or more) coupled inductors - One primary, one or more secondaries
- Only responds to a differential AC input voltage
- Non-polarized (sort of) ...
- Typical Cores: Iron, Ferrite

Uses:

- Transforming impedance or voltage / current
- Changing a balanced line to an unbalanced line (balun)
- Common mode noise rejection
- Isolation

Formulas:

If N1 = Number of turns on the primary, $\mathrm{N} 2=$ Number of turns on the secondary

- Voltage ratio $=$ N2 $/$ N1 $-->$ VOut $=$ VIn * $(N 2 / N 1)$
- Current ratio $=$ N1 / N2 $-->$ IOut $=$ IIn * (N1/N2); Power must remain constant!
- Impedance ratio $=\mathrm{V} / \mathrm{I}=(\mathrm{N} 2 / \mathrm{N} 1) /(\mathrm{N} 1 / \mathrm{N} 2)=(\mathrm{N} 2 / \mathrm{N} 1)^{2}$

$$
-->\mathrm{Z} 2=\mathrm{Z} 1 *(\mathrm{~N} 2 / \mathrm{N} 1)^{2}
$$

Transformer

Test Questions

G5C06: What is the RMS voltage across a 500-turn secondary winding in a transformer if the 2250 -turn primary is connected to 120 VAC?
A) 2370 volts
B) 540 volts
C) 26.7 volts
D) 5.9 volts

- VOut $=$ VIn * $(N 2 / N 1)=120 *(500 / 2250)=26.7$ Volts (C)

G5C07: What is the turns ratio of a transformer used to match an audio amplifier having 600 ohm output impedance to a speaker having 4 ohm impedance?
A) 12.2 to 1
B) 24.4 to 1
C) 150 to 1
D) 300 to 1

- $\mathrm{Z} 2=\mathrm{Z1}$ * $(\mathrm{N} 2 / \mathrm{N} 1)^{2}$; By convention Z 2 is the highest impedance for turns ratio
$(\mathrm{N} 2 / \mathrm{N} 1)=\operatorname{Sqrt}(\mathrm{Z} 2 / \mathrm{Z} 1)=\operatorname{Sqrt}(600 / 4)=\operatorname{Sqrt}(150)=12.25(A)$

Uses

Ethernet

- Eliminate ground loops
- Reject common mode noise

Linear Power Supplies

- Convert line voltage to desired output voltage and current

Uses

- Professional Audio
- Receive phantom power
- Match impedances

RF Coupling

- Control voltage, impedance and frequency response between stages

Bias Tee

RLC Demo

